Rotate SCN-Resistant Seed Varieties for Optimal Protection

For combating SCN during the 2022 growing season, The SCN Coalition encourages growers to work with their advisors to select the appropriate SCN-resistant varieties.
For combating SCN during the 2022 growing season, The SCN Coalition encourages growers to work with their advisors to select the appropriate SCN-resistant varieties.
(Farm Journal)

Understanding the difference between soybean cyst nematode-resistant varieties may help soybean growers understand the importance of rotating sources of resistance, which is one of the “active SCN management” strategies advised by The SCN Coalition. For combating SCN during the 2022 growing season, The SCN Coalition encourages growers to work with their advisors to select the appropriate SCN-resistant varieties. 
 
“Most soybean growers are familiar with PI 88788 and Peking, the two most widely used sources of resistance to soybean cyst nematode,” says Melissa Mitchum, University of Georgia molecular nematologist. “What might be news to growers is these different sources of SCN resistance have different resistance genes — also known as different modes of action.” 
 
Simply speaking, resistance from the PI 88788 line contains one gene, Rhg1. Resistance from Peking contains two resistance genes, Rhg1 and Rhg4. “There are also different flavors — aka alleles — of the Rhg1 genes, which is where the A and B designations come into play,” Mitchum adds. “PI 88788 has Rhg1b, and Peking has Rhg1a plus Rhg4. With Peking you need both genes to confer resistance.” 

Keeping track of copy numbers 

There’s another wrinkle when it comes to resistance genes: the number of times that gene is repeated in an SCN-resistant soybean variety. “Not only do you have different alleles at Rhg1, but there are also differences in the copy number of the genes,” Mitchum explains. 
 
In other words, there could be varieties from PI 88788 that have slight differences in copy number. Therefore, if growers can only get soybeans with PI 88788 resistance, The SCN Coalition recommends rotating different varieties of soybeans with PI 88788 because not all PI 88788 varieties are the same. 
 
While copy numbers are part of the equation, Mitchum says, “It’s also how the genes interact. For example, we’ve shown that Rhg4 from Peking doesn’t function on its own. Rhg4 also doesn’t talk to Rhg1b from PI 88788. Combining them doesn’t do anything,” says Mitchum. “But pyramiding two resistance genes from wild soybean (Glycine soja) onto Rhg1b does have an effect on combating virulent nematodes. Virulence is the ability of SCN to reproduce on a resistant soybean plant.
 
“Ideally, we’d like growers to rotate among several different modes of action of SCN resistance,” she adds. “That’s what we’re working to provide.” 

More resistance genes on the way

However, Mitchum says there are additional resistance genes that haven’t been used yet in commercial soybean varieties. “We’ve only utilized Rhg1 and Rhg4, and that’s what you see in growers’ fields, but we can breed with other sources to introduce other resistance genes.”
 
Mitchum is working closely with soybean breeders to investigate other sources of resistance. “We’ve already found new genes and gene combinations that are different from Rhg1b in PI 88788 and the Rhg1a/Rhg4 combination in Peking to help fight back against virulent SCN.” 
 
What growers can expect next from checkoff-funded SCN research
For several years, checkoff-funded researchers have been working to identify novel types of nematode resistance. Advances in technology, such as the ability to clone resistance genes and the development of precise molecular markers, have allowed university soybean breeders to speed up the process of getting resistant cultivars out to commercial breeders.  
 
“Today, we can quickly test more soybean germplasm for nematode resistance,” Mitchum explains. “We’re also looking at which genes we should combine, which genes we shouldn’t, and the best rotation strategies for different modes of action.”  
 
The goal is to get more SCN-resistant modes of action on the market for farmers and protect existing SCN resistance sources. “We want to keep PI 88788 in the toolbox and offer growers other options to protect their soybean yields,” Mitchum says. 
 
To learn more about the checkoff-funded research that’s focused on bringing new tools to soybean growers in the fight against parasitic nematodes, watch the Research Collection of “Let’s Talk Todes” videos.


 

Latest News

University of Nebraska Professor Leads RNAi Research Targeting Western Corn Rootworm
University of Nebraska Professor Leads RNAi Research Targeting Western Corn Rootworm

Research underway at the University of Nebraska-Lincoln is showing promise by targeting western corn rootworm genes with RNAi technology.

DJI Launches New Ag Spray Drones
DJI Launches New Ag Spray Drones

Building on the Agras drone line, the T50 offers improved efficiency for larger-scale growing operations, while the lightweight T25 is designed to be more portable for smaller fields.

New Jersey Woman Receives Pig Kidney and Heart Pump in Groundbreaking Surgery
New Jersey Woman Receives Pig Kidney and Heart Pump in Groundbreaking Surgery

A New Jersey woman fighting for her life received an incredible gift from a pig last month at Massachusetts General Hospital. 

RhizeBio’s Doug Toal Talks Soil Microbiology, Ag Entrepreneurship With Top Producer
RhizeBio’s Doug Toal Talks Soil Microbiology, Ag Entrepreneurship With Top Producer

RhizeBio cofounder Doug Tole joins host Paul Neiffer for Episode 143 of the Top Producer Podcast.

 A Message to the Ag Industry about H5N1
A Message to the Ag Industry about H5N1

The livestock industry needs a comprehensive, cohesive plan to address the virus. Producers, their employees and veterinarians need clear answers and support from U.S. agricultural leadership, moving forward.

USDA Now Requiring Mandatory Testing and Reporting of HPAI in Dairy Cattle as New Data Suggests Virus Outbreak is More Widespread
USDA Now Requiring Mandatory Testing and Reporting of HPAI in Dairy Cattle as New Data Suggests Virus Outbreak is More Widespread

USDA is now ordering all dairy cattle must be tested prior to interstate travel as a way to help stop the spread of HPAI H5N1. This comes a day after FDA confirmed virus genetic material was found in retail milk samples.